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We use a path integral representation to solve the Eigen and Crow-Kimura molecular evolution models for
the case of multiple fitness peaks with arbitrary fitness and degradation functions. In the general case, we find
that the solution to these molecular evolution models can be written as the optimum of a fitness function, with
constraints enforced by Lagrange multipliers and with a term accounting for the entropy of the spreading
population in sequence space. The results for the Eigen model are applied to consider virus or cancer prolif-
eration under the control of drugs or the immune system.
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I. INTRODUCTION

Methods of statistical physics have been applied success-
fully to understand phase transitions of various physical sys-
tems in the past few decades �1�. Molecular models of bio-
logical evolution also exhibit phase transition behaviors and
such models have received much attention in recent decades
�2–12�. In particular, the notion of adaptive evolution on a
fitness �replication rate� landscape has proven very fruitful
�2–5�. In the last decade, several exact results �6–11� have
been derived for the Eigen �2,3� and Crow-Kimura �4,6� qua-
sispecies models of biological evolution and their generali-
zations �12� for a single peak fitness landscape.

However, it is widely accepted that biological evolution
proceeds on a rugged fitness landscape �13,14�. In this paper,
we consider a multiple peak replication rate landscape as a
means to model a rugged fitness landscape. To date, there are
few rigorous results for multiple peak fitness landscapes.
Such results begin to make the connection with the
biologically-relevant case of a rugged fitness landscape. We
derive here exact error thresholds by means of a path integral
representation for both the Eigen and Crow-Kimura
mutation-selection schemes with an arbitrary number of rep-
lication rate peaks.

We first generalize the Crow-Kimura model to the mul-
tiple peak case. The solution of the one-peak version of this
model, where the replication rate is a function of Hamming
distance from one configuration, was provided by a path in-
tegral representation in �9,10�. We provide here the solution
to this model for K peaks, where the replication rate is a
function of Hamming distances from K configurations, again
by means of a path integral. We find that the mean distances
from the peaks maximize the replication rate, with con-
straints provided by Lagrange multipliers, and with an addi-
tional term that represents the entropy of the population in
sequence space. Explicit solutions to this maximization task
are given for the two-peak case.

We then generalize and solve the continuous-time Eigen
model for K peaks, where the replication and degradation
rates are functions of Hamming distances from K configura-
tions. A solution of the discrete-time, single-peak Eigen
model, which in a sense interpolates between the Crow-

Kimura and continuous-time Eigen model �15�, was pro-
vided in �16�. We solve here the continuous-time Eigen
model for K peaks, again by means of a path integral repre-
sentation. The mean distances from the peaks maximize an
excess replication rate with an effective mutation rate, with
constraints provided by Lagrange multipliers, and with an
additional term that represents the entropy of the population
in sequence space under the effective mutation rate.

The Eigen model was first developed to study viral evo-
lution �2�, and we use our solution of the two-peak Eigen
model to consider viral propagation in the presence of either
immune system suppression or an antiviral drug. The pre-
ferred viral genome exists at one point in genome space.
Conversely, the drug or immune system suppresses the virus
most strongly at some other point in genome space. These
two points in genome space are the two peaks of the model.
The viral growth rate and the suppression rate both decrease
with the Hamming distance away from these two unique
points.

The rest of the paper is organized as follows: In Sec. II we
describe the generalization of the Crow-Kimura, or parallel,
model �4� to multiple peaks and provide a solution of this
model for an arbitrary replication rate function that depends
on distances from K peaks. In Sec. III, we describe the Eigen
model and provide a solution for arbitrary replication and
degradation rate functions that depend on distances from K
peaks. In Sec. IV, we use the Eigen model with two peaks to
address the interaction of the immune system with a drug.
We consider both adaptable viruses and the original antigenic
sin phenomena �17�. We also consider tumor suppression by
the immune system. We discuss these results and conclude in
Sec. V. We provide a derivation of the path integral repre-
sentation of the continuous-time Eigen model in the Appen-
dix .

II. CROW-KIMURA MODEL WITH MULTIPLE PEAKS

Here we first briefly introduce the Crow-Kimura model
�4� and its quantum spin version �6� so that it is easier to
understand its generalizations to be studied in the present
paper. In the Crow-Kimura model, any genotype configura-

PHYSICAL REVIEW E 73, 041913 �2006�

1539-3755/2006/73�4�/041913�10�/$23.00 ©2006 The American Physical Society041913-1

http://dx.doi.org/10.1103/PhysRevE.73.041913


tion i is specified a sequence of N two-valued spins sn= ±1,
1�n�N. We denote such configuration i by Si
��s1

i , . . . ,sN
i �. That is, as in �3�, we consider sn= +1 to rep-

resent the purine �A ,G� and sn=−1 to represent the pyrimi-
dine �C ,T�. Two-values spin models have also been used to
study long-range correlations in DNA sequences �18� and
DNA unzipping �19,20� and valuable results have been ob-
tained. The difference between two configurations Si and Sj
��s1

j , . . . ,sN
j � is described by the Hamming distance dij = �N

−�nsn
i sn

j � /2, which is the number of different spins
between Si and Sj. The relative frequency pi of the
configuration Si, 1� i�2N, satisfies

dpi

dt
= pi�ri − �

j=1

2N

rjpj� + �
j=1

2N

�ijpj . �1�

Here ri is the replication rate or the number of offspring per
unit period of time �the fitness� of the sequence Si, and �ij is
the mutation rate to move from sequence Si to sequence Sj
per unit period of time. In the Crow-Kimura model, only
single base mutations are allowed: �ij =���dij −1�
−N���dij�. Here ��n� is the Kronecker � function.

The fitness of an organism with a given genotype is speci-
fied in the Crow-Kimura model by the choice of the replica-
tion rate function ri, which is a function of the genotype: ri
= f�Si�. It has been observed �6,7� that the system �1�, with
ri� f�s1

i , . . . ,sN
i � evolves according to a Schrödinger equation

in imaginary time with the Hamiltonian

− H = ��
n=1

N

��n
x − 1� + f��1

z , . . . ,�N
z � . �2�

Here �x and �z are the Pauli matrices. The mean replication
rate, or fitness, of the equilibrium population of genotypes is
calculated as �see Reference �3��:

lim
t→	

�
i

pi�t�ri = lim

→	

1



ln Z � lim


→	

1



ln Tr exp�− 
H� .

In this way it is possible to find the phase structure and error
threshold of the equilibrium population. In the generalized
setting, the Crow-Kimura model is often called the parallel
model.

A. The parallel model with two peaks

We consider two peaks to be located at two configurations
vn

1 ,vn
2 ,1�n�N, where vn

1= ±1,vn
2= ±1, and the two con-

figurations have l common spins: �n=1
N vn

1vn
2=2l−N. The

value of l determines how close the two peaks are in geno-
type space. Now the replication rate ri of configuration Si is
a function of the Hamming distances to each peak,

ri = f�2L1/N − 1,2L2/N − 1� , �3�

where �n=1
N vn

1sn=2L1−N and �n=1
N vn

2sn=2L2−N.
Due to the symmetry of the Hamiltonian, the equilibrium

frequencies are a function only of the distances from the two
peaks: pi� p�L1 ,L2�. We define the factors x�1,�2

that de-
scribe the fraction of spins a configuration Si has in common

with the spins of configurations v1 ,v2. In particular, we de-
fine the fraction of spins that are equal to �k times the value
in peak configuration vk. For K peaks, the general definition
is x�1¯�K

= �1/N��n=1
N ��sn ,�1vn

1�¯��sn ,�Kvn
K�. For the two

peak case, x�1,�2
satisfy the relations x+++x+−+x−++x−−=1,

x+++x+−=L1 /N, x+++x−+=L2 /N, and x+++x−−= l /N. Thus
these factors are related to the distances from the configura-
tion to each peak and to the distance between the peaks;

x+−�L1,L2� = �L1 − L2 + N − l�/�2N� ,

x++�L1,L2� = �L1 + L2 − N + l�/�2N� ,

x−−�L1,L2� = �− L1 − L2 + N + l�/�2N� ,

x−+�L1,L2� = �− L1 + L2 + N − l�/�2N� . �4�

With these factors, we find the following equation for the
total probabliity at a given value of L1 and L2, P�L1 ,L2�:

dP�L1,L2�
dt

= f�2L1

N
− 1,

2L2

N
− 1�P�L1,L2� − �NP�L1,L2�

+ � �
�1=±1,�2=±1

Nx�1,�2
�L1 + �1,L2 + �2�

� P�L1 + �1,L2 + �2� − P�L1,L2�

� �
L1�,L2�=0

N

f�2L1�

N
− 1,

2L2�

N
− 1�P�L1�,L2�� . �5�

Only the values of L1 and L2 satisfying the conditions 0
�Li�N, 	L1+L2−N 	 � l, 	L1−L2 	 �N− l are associated with
nonzero probabilities. Equation �5� can be solved numeri-
cally to find the error threshold and the average Hamming
distance of the population to the two peaks. In the next sec-
tion we solve this equation, and its generalization to K peaks,
analytically.

B. Exact solution of the K peak case by a path integral
representation

We consider the case of K peaks. We consider the repli-
cation rate to depend only on the distances from each peak

ri = f�2L1

N
− 1, ¯ ,

2LK

N
− 1� � Nf0�u1, . . . ,uK� , �6�

where Nuk=�n=1
N vn

ksn=2Lk−N , 1�k�K. The observable
value 
uk� is called the surface magnetization �21�, or surplus
�6�, for peak k.

Characterization of the fitness function that depends on K
peaks through the K values of uk requires more than the
K�K−1� /2 Hamming distances between the peaks. It proves
convenient to define the 2K parameters y�1¯�K

�yi ,1� i
�2K. These are defined by yi= �1/N��n=1

N �k=1
K ���ik ,vn

k�.
Here �ik is the set of indices �1¯�K, and �ik=�k in the ith
set of indices �1¯�K. The introduction of the 2K parameters
yi is one principle point of this paper.

The Suzuki-Trotter method has been applied in �9,10� to
convert the quantum partition function for a single peak

SAAKIAN et al. PHYSICAL REVIEW E 73, 041913 �2006�

041913-2



model into a classical functional integral. While calculating
Z�exp�−
H�, intermediate spin configurations are intro-
duced. We find Z is a functional integral, with the integrand
involving a partition function of a spin system in the 2D
lattice. In the spin system, there is a nearest-neighbor inter-
action in horizontal direction and a mean-field-like interac-
tion in the vertical direction. This spin system partition func-
tion was evaluated in �9,10� under the assumption that the
field values are constant. A path integral representation of the
discrete time Eigen model, which is quite similar to the par-
allel model, was introduced by Peliti �16�.

Here we generalize this procedure to K peaks and calcu-
late the time-dependent path integral and Ising partition
function. Since the replication rate is a function of K dis-
tances, the functional integral is over K fields that represent
the K magnetizations. The path integral form of the partition
function is

Z = DMkDHk exp�N
0




d
�� f0�M1�
��, . . . ,MK�
���

− �
k=1

K

Hk�
��Mk�
�� − �� + N�
i=1

2K

yi ln Q1� , �7�

where

Q1 = Tr T̂e�0

d
���x�+�z�k=1

K �ikHk�
���. �8�

Here 
= t is the large time to which Eq. �1� is solved, and the

operator T̂ denotes time ordering �10�, discussed in the
Appendix in the context of the Eigen model. Using that N is
large, we take the saddle point. Considering
� ln Z /�Mk�
��=0 and � ln Z /�Hk�
��=0, we find Mk�
��
and Hk�
�� independent of 
� is a solution. At long time,
therefore, the mean replication rate, or fitness, per site be-
comes

ln Z


N
= max

Mk,Hk

� f0�M1, . . . ,MK� − �
k=1

K

HkMk

− �+ �
i=1

2K

yi��2 + ��
k=1

K

�ikHk�2�1/2� . �9�

We take the saddle point in Hk to find

Mk = �
i

yi�ik

�
k�=1

K

�ik�Hk�

��2 + ��
k�=1

K

�ik�Hk��2
. �10�

We note that the observable, surface magnetization given by

uk�, is not directly accessible in the saddle point limit, but is
calculable from the mean replication rate �6�. In the one peak
case one defines the observable surface magnetization for a
monotonic fitness function as follows �7�: one solves the
equation f0�
u��= �ln Z� / �
N�. For multiple peaks, we use

this same trick, considering a symmetric fitness function and
assuming 
u1�= 
u2�¯ = 
uK�.

C. Explicit results for the two peak case

For clarity, we write the expression for the case of two
peaks. In this case, y+++y−−= �1+m� /2 and
y+−+y−+= �1−m� /2, where m= �2l−N� /N. We solve Eq. �10�
for the fields Hk and put the result into Eq. �9�. We find that
for a pure phase, the bulk magnetizations maximize the func-
tion

ln Z

N

= f0�M1,M2� +

�

2
��1 + m�2 − �M1 + M2�2

+
�

2
��1 − m�2 − �M1 − M2�2 − � , �11�

with the constraints

− 1 � M1 � 1, − 1 � M2 � 1,

− �1 + m� � M1 + M2 � 1 + m ,

− �1 − m� � M1 − M2 � 1 − m . �12�

In the case of a quadratic replication rate, f0=k1M1
2+k2M2

2

+k3M1M2, Eq. �11� becomes

ln Z

N

= k1M1

2 + k2M2
2 + k3M1M2 +

�

2
��1 + m�2 − �M1 + M2�2

+
�

2
��1 − m�2 − �M1 − M2�2 − � , �13�

with the constraints of Eq. �12�.
As an example, we consider the replication rate function

f0=k�M1
2+M2

2+M1M2� /2. When m0, and the two peaks
are within a Hamming distance of N /2 of each other, there is
a solution with M1=M2=M for which

3kM2

2�
+ ��1 + m

2
�2

− M2�1/2

−
1 + m

2

=
k

2�
�
u1�2 + 
u2�2 + 
u1�
u2�� , �14�

where the observable, surface magnetization, is given by

ui�= 
2Li /N−1�. We find

M1 = M2 = M = ��1 + m�2/4 − �2/�9k2� . �15�

We have for the mean replication rate, or fitness, per site

ln Z


N
=

3k

2
�1 + m

2
−

�

3k
�2

, �16�

so that �6�


u1� = 
u2� =
1 + m

2
−

�

3k
. �17�

When m�0, and the two peaks are greater than a Hamming
distance of N /2 of each other, there is a solution with
M1=−M2=M for which
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kM2

2�
+ ��1 − m

2
�2

− M2�1/2

−
1 − m

2

=
k

2�
�
u1�2 + 
u2�2 + 
u1�
u2�� . �18�

One solution is

M1 = − M2 = ��1 − m�2/4 − �2/k2, �19�

which gives for a mean replication rate, or fitness, per site

ln Z


N
=

k

2
�1 − m

2
−

�

k
�2

, �20�

so that �6�


u1� = − 
u2� =
1 − m

2
−

�

k
. �21�

Numerical solution is in agreement with our analytical for-
mulas, as shown in Table I.

III. EIGEN MODEL WITH MULTIPLE PEAKS

A. Exact solution by a path integral representation

In the case of the Eigen model, the system is defined by
means of replication rate functions, rj, as well as degradation
rates, Dj,

dpi

dt
= �

j=1

2N

�Qijrj − �ijDj�pj − pi��
j=1

2N

�rj − Dj�pj� . �22�

Here the frequencies of a given genome, pi, satisfy �i=1
2N

pi
=1. The transition rates are given by Qij =qN−dij�1−q�dij, with

dij being the Hamming distance between two genomes Si and
Sj. The parameter �=N�1−q� describes the efficiency of mu-
tations. We take �=O�1�. As in Eq. �6�, we take the replica-
tion and degradation rate to depend only on the spin state, in
particular on the Hamming distances from each peak: ri
= f�Si� and Di=D�Si� where

f�S� = Nf0�u1, . . . ,uk�, D�S� = Nd0�u1, . . . ,uk� . �23�

We find the path integral representation of the partition func-
tion for the Eigen model for the K peak case in the limit of
long time as

Z = DMkDHkDm0Dh0 exp�N
0




d
�� f0�M1, . . . ,MK�e−��1−m0� − h0m0− �
k=1

K

HkMk − d0�M1, . . . ,MK��+ N�
i=1

2K

yi ln Q1� ,

�24�

where

Q1 = Tr T̂e�0

d
���xh0�
��+�z�k=1

K �ikHk�
��� . �25�

The Mk are the values of the magnetization, and �m0 is an
effective mutation rate. This form is derived in the
Appendix . Using that N is large, we take the saddle point.
As before, we find the mean excess replication rate per site,
fm=limt→	 �ipi�t��ri−Di� /N, from the maximum of the ex-
pression for Z=Tr exp�−
H�. We find Z�exp�
Nfm�, where

fm = f0�M1, . . . ,MK�e−��1−m0� − d0�M1, . . . ,MK� . �26�

Here m0, Mk are defined through the fields Hk,

Mk = �
i

yi�ik

�
k�=1

K

�ik�Hk�

�h0
2 + ��

k�=1

K

�ik�Hk��2
,

m0 = �
i

yi
h0

�h0
2 + ��

k=1

K

�ikHk�2
. �27�

We define

TABLE I. Comparison between the analytical formulas Eqs.
�17�, �21� for the two peak landscape in the parallel model and
results from a direct numerical solution of the system of differential
equations, Eq. �5�, for sequences of length N=1000, with
p�L1 ,L2 , t=0�=��L1 ,N���L2 , l�.

m k 
u1� 
u2� 
u1�analytic 
u2�analytic

0.93 3.0 0.85 0.85 0.853 0.853

0.93 2.0 0.80 0.80 0.798 0.798

0.7 3.0 0.74 0.74 0.738 0.738

0.7 2.0 0.68 0.68 0.683 0.683

−0.7 3.0 0.52 −0.52 0.517 −0.517

−0.7 2.0 0.35 −0.35 0.35 −0.35

−0.93 3.0 0.63 −0.63 0.631 −0.631

−0.93 2.0 0.46 −0.46 0.465 −0.465
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mi =

�
k=1

K

�ikHk

�h0
2 + ��

k=1

K

�ikHk�2
. �28�

We thus find m0=�i=1
2K

yi
�1−mi

2, giving Eq. �26�.

B. Simple formulas for the two peak case

In the two peak, K=2, case we can define the mi from Eq.
�28� from the system

M1 =
1 + m

2
�m1 + m2� +

1 − m

2
�m1 − m2�,

M2 =
1 + m

2
�m1 + m2� −

1 − m

2
�m1 − m2� , �29�

where m is the overlap between two peaks and we have
defined m1, m2 in terms of the mi from Eq. �28� by
m++=−m−−=m1+m2 and m+−=−m−+=m1−m2. We have for
the mean excess replication rate per site

fm = f0�M1,M2�exp�− ��1 −
1 + m

2
�1 − �M1 + M2�2/�1 + m�2

−
1 − m

2
�1 − �M1 − M2�2/�1 − m�2�� − d0�M1,M2� .

�30�

C. Eigen model with quadratic replication rate without
degradation

We apply our results to model qualitatively the interaction
of a virus with a drug. In some situations, one can describe
the action of a drug against the virus simply as a one peak
Eigen model; that is, the replication rate is a function of the
Hamming distance from one peak. The virus may increase its
mutation rate, and at some mutation rate there is an error
catastrophe �22�. Let us define the critical � for the replica-
tion rate function

f0�M� =
kM2

2
+ 1. �31�

According to our analytical solution, Eq. �26�, we consider
the maximum of the mean excess replication rate per site,

fm = f0�M�exp�− ��1 − �1 − M2�� ,

which can also be obtained from Eq. �30� by taking m=1 and
M1=M2. The error catastrophe occurs and leads to a phase
with M =0 when k��. The error threshold for this quadratic
case is the same as in the case of the Crow-Kimura model
Eq. �1�. The average of u, 
u�, satisfies the equation

f0�M�exp�− ��1 − �1 − M2�� = f0�
u�� =
k
u�2

2
+ 1.

�32�

This equation gives 
u�analytic shown in Table II, which are in
agreement with numerical solutions.

IV. BIOLOGICAL APPLICATIONS

The Eigen model is commonly used to consider virus or
cancer evolution. We here consider an evolving virus or can-
cer and its control by a drug or the immune system, using the
K=2, two-peak version of the Eigen model. To model this
situation, we consider there to be an optimal genome for
virus replication, and we consider the replication rate func-
tion f0�M1 ,M2� to depend only on the Hamming distance of
the virus or cancer from this preferred genome,
N�1−M1� /2. Conversely, there is another point in genome
space that the drug or immune suppresses most strongly, and
we consider the degradation rate function d0�M1 ,M2� to de-
pend only on the Hamming distance from this point,
N�1−M2� /2. While each of the functions f0 and d0 depends
only on one of the two distances, this is multiple-peak prob-
lem, because both distances are needed to describe the evo-
lution of the system.

A. Interaction of virus with a drug

We first consider a virus interacting with a drug. We
model this situation by the Eigen model with one peak in the
replication rate function and one peak in the degradation rate
function. The virus replicates most quickly at one point in
genome space, with the rate at all other points given by a
function that depends on the Hamming distance from this
one point. That is, in Eq. �30� we have

f0�M1,M2� = �A , M1 = 1

1, M1 � 1.
�33�

At another point in genome space, a drug suppresses the
virus most strongly. We consider the case of exponential deg-
radation, a generic and prototypical example of recognition
�17�,

d0�M1,M2� = e−b�1−M2�. �34�

TABLE II. Comparison between the analytical formula Eq. �32�
for the quadratic landscape �31� in the Eigen model and results from
a direct numerical solution of the system of differential equations
Eq. �22�, for sequences of length N=4000, with p�u , t=0�=��u ,1�.
We set �=5.

k /� M 
u� 
u�analytic

1.2 0.24 0.065 0.068

1.4 0.31 0.112 0.113

1.6 0.35 0.146 0.147

1.8 0.38 0.172 0.172

2.0 0.41 0.192 0.193
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Applying the multiple-peak formalism, we find two
phases. There is a selected, ferromagnetic �FM� phase with
M1=1, M2=m and mean excess replication rate per site

fm = Ae−� − exp�− b�1 − m�� . �35�

There is also a nonselective �NS� phase, with M1�1. The
values of M1 and M2 in the NS phase are those which maxi-
mize Eq. �30� given the constraints of Eq. �12�. The error
threshold corresponds to the situation when the mean excess
replication rate of the FM and NS phases are equal. The
phase diagram as a function of the optimal replication rate of
the virus and the distance between the points of optimal virus
growth and optimal virus suppression is shown in Fig. 1. The
optimal replication rate is A, and the distance between the
points of optimal virus growth and optimal virus suppression
is N− l, where the parameter m is defined as m= �2l−N� /N.
As the point in genome space at which the drug is most
effective moves toward the point in genome space at which
the virus grows most rapidly, the virus is more readily eradi-
cated. Alternatively, one can say that as the point in genome
space at which the drug is most effective moves toward the
point in genome space at which the virus grows most rapidly,
a higher replication rate of the virus is required for its sur-
vival.

B. Interaction of an adaptable virus with a drug

We now consider a virus that replicates with rate A when
the genome is within a given Hamming distance from the
optimal genome and with rate 1 otherwise. That is, in Eq.
�30� we have

f0�M1,M2� = �A , M0 � M1 � 1

1, − 1 � M1 � M0,
�36�

where M0�0 and is close to 1. We consider the suppression
of the virus by the drug as expressed in Eq. �34�. There is
again a ferromagnetic �FM� phase with a successful selec-
tion. In the FM phase, one has M0�M1�1. The evolved
values of M1 and M2 maximize

fm = A exp�− ��1 −
1 + m

2
�1 − �M1 + M2�2/�1 + m�2

−
1 − m

2
�1 − �M1 − M2�2/�1 − m�2�� − d0�M1,M2� .

�37�

There is also a NS phase where the virus has been driven off
its advantaged peak, M1�M0. In this case, one seeks a maxi-
mum of Eq. �30� with f0=1 via M1 and M2 in the range
−1�M1�M0, −1�M2�1, subject to the constraints of Eq.
�12�.

A phase diagram for this case is shown in the inset to Fig.
1. The broader range of the virus fitness landscape allows the
virus to survive under a greater drug pressure in model Eq.
�36� versus Eq. �33�. That is, as the drug overlaps more with
the favored virus genotypes, the adaptable virus is still able
to persist due to the greater range of genotype space avail-
able in the FM phase. For such an adaptable virus, a more
specific, multidrug cocktail might be required for eradica-
tion. A multidrug cocktail provides more suppression in a
broader range of genome space, so that the adaptable drug
may be eradicated under a broader range of conditions.

C. Original antigenic sin

The immune system acts much like a drug, as a natural
protection against death by infection. Prior exposure, such as
vaccination, typically increases the immune control of a vi-
rus. In some cases, the immune control of a virus is non-
monotonic in the overlap between the vaccine and the virus
�17�. This phenomenon is termed the original antigenic sin.
To model original antigenic sin, we consider a nonmonotonic
degradation function, centered around the second peak,
which represents the nonmonotonic behavior of the binding
constant, as in our previous model �17�. We fit the binding
constant data �17� to a sixth order polynomial in p, where
p= �1−M2� /2 is the relative distance between the recognition
of the antibody and the virus. The degradation function is
shown in the inset in Fig. 2. We consider a single peak virus
replication rate, Eq. �33�.

There is an interesting phase structure as a function of m.
From Eq. �30�, we have a FM phase with M1=1, M2=m. We
also have a nonselective NS phase, with M1�1, where
M1 ,M2 are determined by maximization of Eq. �30� with
f0=1 under the constraints of Eq. �12�. The phase diagram
for typical parameters �17� is shown in Fig. 2. A continuous
phase boundary is observed between the FM and NS phases.
The virus replication rate required to escape eradication by
the adaptive immune system depends on how similar the
virus and the vaccine are. When the vaccine is similar to the

FIG. 1. A phase diagram for the interaction of virus and drug,
according to the narrow replication advantage model, Eqs. �34� and
�33�. We set b=3.5 in the exponential degradation function Eq.
�34�, and �=1. As the drug overlaps more with the virus, a higher
viral replication advantage is required for the virus to survive. In the
NS phase, the drug eliminates the virus. In the inset is shown the
phase diagram for the interaction of an adaptable virus and a drug,
according to the flat peak replication advantage model, Eqs. �34�
and �36�. We use M0=0.9 to represent a broad peak for the virus
replication rate.
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virus, m near 1, a large virus replication rate is required to
escape eradication. This result indicates the typical useful-
ness of vaccines in protection against and eradication of vi-
ruses. When the vaccine is not similar to the virus, m�0, the
vaccine is not effective, and only a typical virus replication
rate is required.

When the vaccine is somewhat similar to, but not identi-
cal to, the virus, the replication rate required for virus sur-
vival is nonmonotonic. This result is due to the nonmono-
tonic degradation rate around the vaccine degradation peak.
The minimum in the required virus replication rate, m
�0.30, corresponds to the minimum in the degradation rate,
M2�0.30. The competition between the immune system,
vaccine, and virus results in a nontrivial phase transition for
the eradication of the virus.

D. Tumor control and proliferation

We consider cancer to be a mutating, replicating object,
with a flat replication rate around the first peak, Eqs. �36� and
�30�. We consider the immune system to be able to eradicate
the cancer when the cancer is sufficiently different from self.
Thus, the T cells have a constant degradation rate every-
where except near the self, represented by the second peak,

d0�M1,M2� = �B , − 1 � M2 � Mb

0, Mb � M2 � 1.
�38�

To be consistent with the biology, we assume Mb�0. We
also assume M0�1/2. Typically, also, the Hamming dis-
tance between the cancer and the self will be small, m will be
positive and near unity, although we do not assume this.

There are four possible selective, ferromagnetic phases.
We find the phase boundaries analytically, as a function of
m= �2l−N� /N. For mM0�Mb, there is a FM4 phase with
M1=M0 and M2=mM0. The mean excess replication rate per

site is fm=Ae���1−M0
2−1�−B. There is a FM3 phase with M1

=M0 and M2=Mb. The mean excess replication rate per site

is fm=Ae����1+m�2−�M0+Mb�2+��1−m�2−�M0−Mb�2−2�/2. This phase is
chosen over the FM4 phase when the mean excess replica-
tion rate is greater. For mM0Mb there is a FM2 phase with
M1=M0 and M2=mM0. The mean excess replication rate per

site is fm=Ae���1−M0
2−1�. For mMbM0 there is a FM1 phase

with M1=mMb and M2=Mb. The mean excess replication

rate per site is fm=Ae���1−Mb
2−1�.

There are two nonselective phases. There is a NS1 phase
with M1=mMb and M2=Mb. The mean excess replication

rate per site is fm=e���1−Mb
2−1�. There is a NS2 phase with

M1=M2=0. The mean excess replication rate per site is fm
=1−B.

In Fig. 3 is shown the phase diagram for cancer prolifera-
tion. According to our previous model �17,23�, we choose
�1−Mb� /2=0.23. We choose M0=0.9 for the width of the
advantaged cancer phase. We choose the immune suppres-
sion rate as B=1. As the cancer becomes more similar to the
self, the immune control becomes less effective, and the rep-
lication rate required for the cancer to proliferate becomes
less. Three of the four selective and one of the two nonse-
lective phases are present for this set of parameters.

V. DISCUSSION AND CONCLUSION

We have used the Eigen model to consider the interaction
of a virus or cancer with a drug or the immune system. One
can also use the parallel model to represent the replication
dynamics of the virus or the cancer. This would be an inter-
esting application of our formalism.

Another application of the formalism would be to con-
sider explicitly the degradation induced by multidrug cock-
tails. That is, one would consider one peak to represent the
preferred virus genome and K−1 degradation peaks to rep-
resent the K−1 drugs. We note that in the general case, the yi
parameters depend on the explicit location of the drug deg-
radation peaks, not simply the distance between them. Re-

FIG. 2. A phase diagram corresponding to the original antigenic
sin model is shown. The degradation function �shown in the inset�
is chosen to closely reproduce the binding constant behavior in
�17�, with a limiting degradation rate of d0�M1 ,M2=−1�=1. We use
�=1. The virus replication advantage required to escape immune
system control is a non-monotonic function of the overlap of the
vaccine with the virus.

FIG. 3. A phase diagram corresponding to the immune control
of cancer is shown. We use �=1, B=1, M0=0.9, and Mb=0.54. The
cancer replication advantage required to escape immune system
control decreases with the overlap of the cancer with the self. Three
of the four selective and one of the two nonselective phases are
present for the chosen parameters.
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sults from this application of the formalism could be quite
illuminating as regards the evolution of multidrug resistance.

In conclusion, we have solved two common evolution
models with general fitness, or replication and degradation
rate, landscapes that depend on the Hamming distances from
several fitness peaks. Why is this important? First, we have
solved the microscopic models rather than assuming a phe-
nomenological macroscopic model. As is known in statistical
mechanics, a phenomenological model may not always de-
tect the fine structure of critical phenomena. Second, ap-
proximate or numerical solutions, while useful, do not al-
ways explicitly demonstrate the essence of the phenomenon.
With analytical solutions, the essence of the phenomenon is
transparent. Third, we have derived the first path integral
formulation of the Eigen model. This formulation may prove
useful in other studies of this model of molecular evolution.

Our results for cancer are a case in point. There are four
stable selective phases and two stable nonselective phases.
These results may help to shed light on the, at present, poorly
understood phenomena of interaction with the immune sys-
tem, and on why the immune response to cancer and to vi-
ruses differs in important ways. These phases could well also
be related to the different stages, or grades, through which
tumors typically progress.

Our results are a first step toward making the connection
with evolution on rugged fitness landscapes, landscapes
widely accepted to be accurate depictions of nature. We have
applied our solution of these microscopic complex adaptive
systems to model four situations in biology: how a virus
interacts with a drug, how an adaptable virus interacts with a
drug, the problem of original antigenic sin �17�, and immune
system control of a proliferating cancer.
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APPENDIX

In this appendix we derive the path integral representation
for the solution to the Eigen model. For simplicity, we show
the derivation for the K=1 case. To our knowledge, this is
the first path integral expression representation of the solu-
tion to the Eigen model. This path integral representation
allows us to make strong analytic progress. We start from the
quantum representation of the Eigen model �8�. The Hamil-
tonian is given by

− H = �
l=0

N

Ne−�� �

N
�l

�
1�i1�i2�¯�il�N

�i1
x �i2

x
¯ �il

x � f0��z�

− Nd0��z� � Ne−�e��/N��i�i
x
f0��z� − Nd0��z� , �A1�

where we have used the fact that with � /N small, we need to
consider only l�N spin flips. The partition function is de-
composed by a Trotter factorization,

Z = Tr e−
H = Tr
S1	e−
H/L	S2�
S2	e−
H/L	S3�
SL	e−
H/L	S1� .

�A2�

Here


Sl−1	e−
H/L	Sl� = 
Sl−1	e�
N/L��e−�e��/N��i�i
x
f0��z� − d0��z��	Sl�

= 
Sl−1	I +

N

L �e−�e��/N��i�i
x
f0��

n

sn
l /N�

− d0��
n

sn
l /N��	Sl� . �A3�

We use the notation Ml=�nsn
l /N. We find

�l = 
Sl−1	I +

N

L
e−�f0��

n

sn
l /N�e��/N��i�i

x

−

N

L
d0��

n

sn
l /N�	Sl�

= 
Sl−1	Sl��1 −

N

L
d0�Ml�� +


Ne−�

L
f0�Ml�eB�n�sn

l−1sn
l −1�,

�A4�

where e−2B=� /N. We thus find

�l = ��dl��1 −

N

L
d0�Ml�� +


N

L
e−�f0�Ml�eBdl, �A5�

where dl=�n�sn
l−1sn

l −1�. To represent this in path integral
form, we consider

1

�2��2  dhdmd�e�tNe−�f0�Ml�e
Bme−�m−�tNd0�Ml� � e�d−h�m−d�

=
1

2�
 dhdm���d�e−�tNd0�Ml� + �tNe−�f0�Ml�

� eBm��m − d��e−h�m−d� + O���t�2�

= dm���d���m − d�e−�tNd0�Ml� + �tNe−�f0�Ml�

�eBm��m − d���m − d��
= ��d�e−�tNd0�Ml� + �tNe−�f0�Ml�eBd��0�

= ��0����d�e−�Nd0�Ml� + �tNe−�f0�Ml�eBd� , �A6�

where �t=
 /L. We note that had we used a Fourier repre-
sentation of the � function on the finite domain
�−A /2 ,A /2� instead of the infinite domain �−	 , 	 �, the ex-
pression 2���0� simply becomes A; moreover, such a finite
representation of the � function is a sufficiently accurate rep-
resentation of the ��dl� constraint when A�N. Ignoring the
constant prefactor ��0� terms, we can write the full partition
function as
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Z = Tr D�DhDme�l�ldl+�
N/L��l�−hlml+hldl� . �A7�

We now introduce the integral representation of the con-
straint ���
 /L��NMl−�nsn

l ��. After rescaling Bml→ml, hl

→Bhl we find

Z = Tr D�DhDmDHDMe�
N/L��l�e
−�f0�Ml�e

ml

� ee−�lml/B−d0�Ml�−hlml−HlMl

� e�
/L��lHl�nsn
l +�l��l+
NBhl/L��n�sn

l−1sn
l −1�. �A8�

We note by an expansion of the

exp��
N/L�e−�f0�Ml�emlexp�− �lml/B��

= �
kl=0

	

��
N/L�e−�f0�Ml�eml�kl exp�− kl�lml/B�/kl!

term in Eq. �A8� to first order in 
N /L that the integral over
�l gives nothing more than ��−klml /B+dl� for kl=0,1. This
condition, however, is already enforced by the hl field when
kl=1 and by the ml field when kl=0 if we take as a rule to
disallow mutations when hl=0. We can, thus, remove the
integral over �, removing the ��0� that we anticipated, to
find

Z = DhDmDHDMe�
N/L��l�e
−�f0�Ml�e

ml−d0�Ml�

� e−hlml−HlMlQ , �A9�

where

Q = Tr e�
/L��lHl�nsn
l +�
NB/L��lhl�n�sn

l−1sn
l −1�F . �A10�

Here Q is the partition function of N 1D Ising models of
length L. Here F enforces the constraint of disallowing mu-
tations when hl=0: F=�l=1

L ����hl���n�sn
l−1sn

l −1���. We note
that Q=Q1

N, where Q1 is the partition function of one of these
models. We are not, at this point, allowed to assume that the
Hl or hl fields are constant over l. Indeed, by Taylor series
expanding the first term in Eq. �A9� and integrating over ml,
we find that hl=0 or hl=L / �
N�. For hl=0, we disallow mu-
tations, as formalized by F. Thus,we can replace e−2B by
�tl /N, where tl=0 if hl=0, and tl=1 if hl=L / �
N�. We evalu-
ate the partition function Q1 with an ordered product of
transfer matrices. To first order in 
 /L the matrix at position
l is given by Tl= I+�l where

�l =�

Hl

L

�tl

N

�tl

N
−


Hl

L
� =�


Hl

L


�hl

L


�hl

L
−


Hl

L
� . �A11�

We find

Q1 = Tr�
l

Tl � Tr�
l

e�l. �A12�

We rescale h→h /� and m→m� and take the continuous
limit to find

Q1 = Tr T̂e�0

d
���zH�
��+�xh�
���, �A13�

where the operator T̂ indicates �reverse� time ordering, and

�=
�L− l� /L. We find the form of the partition function to
be

Z = DhDmDHDMeN�0

d
��e−�f0�M�e�m−d0�M�−hm−HM�+N ln Q1.

�A14�

Noting the N prefacing the entire term in the exponential, we
take the saddle point. We note that

�Q1/�H�
��	H�
��=H,h�
��=h = �
H/�H2 + h2�2

�sinh�
�H2 + h2�

and

�Q1/�h�
��	H�
��=H,h�
��=h = �
h/�H2 + h2�2 sinh�
�H2 + h2� .

We, thus, find a solution of the saddle point condition to be
fields H ,M ,h ,m independent of 
 that maximize

ln Z

N
= 
� f0�M�e−�e�m − d0�M� − hm − HM�

+ ln�2 cosh�
�H2 + h2�� , �A15�

when the fields are averaged over a range �
=O�1/N� by
the saddle point limit. In the limit of large 
, we find

ln Z


N
= max

M,H,m,h
� f0�M�e−�e�m − d0�M� − hm − HM

+ �H2 + h2�1/2� . �A16�

One can also derive Eq. �A16� by means of a series expan-
sion in 
, a “high temperature” expansion.

The generalization of the path integral representation to
the multiple peak Eigen case proceeds as in the parallel case.
One introduces K fields for the magnetizations, Mk, and K
fields enforcing the constraint, Hk. One also finds in the lin-
ear field part of the Ising model the sum �k=1

K Hl
k�nvn

ksn
l in-

stead of simply Hl�nsn
l . The definition of the yi and the �ik

allows one to rewrite this in the form that leads to Eqs. �7�
and �24�.
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